
0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2308211, IEEE Transactions on Computers

1

Maximizing P2P File Access Availability in
Mobile Ad hoc Networks Though Replication for

Efficient File Sharing
Kang Chen, Student Member, IEEE, Haiying Shen*, Senior Member, IEEE,

Abstract—File sharing applications in mobile ad hoc networks (MANETs) have attracted more and more attention in recent years. The
efficiency of file querying suffers from the distinctive properties of such networks including node mobility and limited communication
range and resource. An intuitive method to alleviate this problem is to create file replicas in the network. However, despite the efforts
on file replication, no research has focused on the global optimal replica creation with minimum average querying delay. Specifically,
current file replication protocols in mobile ad hoc networks have two shortcomings. First, they lack a rule to allocate limited resource
to different files in order to minimize the average querying delay. Second, they simply consider storage as resource for replicas, but
neglect the fact that the file holders’ frequency of meeting other nodes also plays an important role in determining file availability.
Actually, a node that has a higher meeting frequency with others provides higher availability to its files. This becomes even more
evident in sparsely distributed MANETs, where nodes meet disruptively. In this paper, we introduce a new concept of resource for
file replication, which considers both node storage and meeting frequency. We theoretically study the influence of resource allocation
on the average querying delay and derive a resource allocation rule to minimize the average querying delay. We further propose a
distributed file replication protocol to realize the proposed rule. Extensive trace-driven experiments with synthesized traces and real
traces show that our protocol can achieve shorter average querying delay at a lower cost than current replication protocols.

Index Terms—MANETs, Peer-to-Peer, File Sharing, File Availability

F

1 INTRODUCTION

With the popularity of popularity of mobile devices,
i.e., smartphones and laptops, we envision the future of
MANETs consisted of these mobile devices. By MANETs,
we refer to both normal MANETs and disconnected
MANETs (or delay tolerant networks (DTNs). The for-
mer has a relatively dense node distribution in a local
area while the latter has sparsely distributed nodes that
opportunistically meet each other. On the other side, the
emerging of mobile file sharing applications (e.g., Qik [1]
and Flixwagon [2]) also motivates the investigation on
the peer-to-peer (P2P) file sharing over such MANETs.

The local P2P model provides three advantages.
Firstly, it enables file sharing when no base stations
are available (e.g., rural area). Secondly, with the P2P
architecture, the bottleneck on overloaded servers in
current client-server based file sharing systems can be
avoided. Thirdly, it exploits the otherwise wasted peer to
peer communication opportunities among mobile nodes.
As a result, nodes can freely and unobtrusively access
and share files in the distributed MANET environment,
which can possibly support some interesting applica-
tions. For example, mobile nodes can share files based
on users’ proximity [3] in the same building or a local
community. Tourists can share their travel experiences

• * Corresponding Author. Email: shenh@clemson.edu; Phone: (864) 656
5931; Fax: (864) 656 5910.

• The authors are with the Department of Electrical and Computer Engi-
neering, Clemson University, Clemson, SC, 29634.
E-mail: {kangc, shenh}@clemson.edu

or emergency information with other tourists through
digital devices directly even when no base station is
available in remote areas. Drivers can share road or
weather information through the vehicle-to-vehicle com-
munication.

However, the distinctive properties of MANETs, in-
cluding node mobility, limited communication range and
resource, have rendered many difficulties in realizing
such a P2P file sharing system. For example, file search-
ing turns out to be non-trivial and time consuming
since nodes in MANETs move around freely and can
exchange information only when they are within the
communication range. Broadcasting can quickly discover
files, but it generates the broadcast storm problem [4]
with high energy consumption. Probabilistic routing and
file discovery protocols [5]–[7] avoid broadcasting by
forwarding a query to a node with higher probability of
meeting the destination. But the opportunistic encoun-
tering of nodes in MANETs makes file searching and
retrieval non-trivial.

File replication is an effective way to enhance file
availability and reduce file querying delay. It creates
replicas for a file to improve its probability of being
encountered by requests. Unfortunately, it is impractical
and inefficient to enable every node to hold the repli-
cas of all files in the system considering limited node
resources. Also, file querying delay is always a main
concern in a file sharing system. Users often desire to
receive their requested files quickly no matter whether
the files are popular or unpopular. Thus, a critical issue is
raised for further investigation: how to allocate the limited
resource in the network to different files for replication so that
the overall average file querying delay is minimized?



0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2308211, IEEE Transactions on Computers

2

Recently, a number of file replication protocols have
been proposed for MANETs [8]–[12]. In these proto-
cols, each individual node replicates files it frequently
queries [8]–[10], or a group of nodes create one replica
for each file they frequently query [10]–[12]. In the
former, redundant replicas are easily created in the sys-
tem, wasting resources. In the latter, though redundant
replicas are reduced by group cooperation, neighbor-
ing nodes may separate from each other due to node
mobility, leading to large query delay. There are also
some works addressing content caching in more sparsely
distributed MANETs (disconnected MANETs/DTNs) for
efficient data retrieval [13]–[19] or message routing [20].
They basically follow an intuitive way to cache data
that are frequently queried on places that are visited
frequently by mobile nodes. Both the two categories of
replication methods fail to thoroughly consider that a
node’s mobility affects the availability of its files.

In spite of the efforts, current file replication protocols
lack a rule to allocate limited resource to different files
for replica creation in order to achieve the minimum
global average querying delay, i.e., global search effi-
ciency optimization under limited resource. Moreover,
they simply consider storage as the resource for replicas,
but neglect that a node’s frequency to meet other nodes
(meeting ability in short) also influences the availability
of its files. Files in a node with a higher meeting ability
have higher availability.

In this paper, we introduce a new concept of resource
for file replication, which considers both node storage
and node meeting ability. We theoretically study the
influence of resource allocation on the average querying
delay and derive an optimal file replication rule that
allocates resources to each file based on its popularity
and size. To the best of our knowledge, this work is
the first attempt to theoretically investigate the problem
of resource allocation for replica creation to achieve
global file searching optimization in MANETs. We fur-
ther propose a file replication protocol based on the
rule, which approximates the minimum global querying
delay in a fully distributed manner. Our experiment and
simulation results show the superior performance of the
proposed protocol in comparison with other representa-
tive replication protocols.

The remainder of this paper is organized as follows.
Section 2 presents an overview of the related works.
Section 3 presents the analysis and modeling of the influ-
ence of the resource allocation on file searching efficiency
under two representative mobility models. Section 4
details the file replication protocol. In Section 5, 6, and 7,
the performance of our proposed system is evaluated
through real traces and synthesized mobility. Section 8
concludes the paper.

2 RELATED WORK
2.1 File Sharing in Normal MANETs
The topic of file replication for efficient file sharing ap-
plications in MANETs has been studied recently. In [10]–
[12], individual or a group of nodes decide the list

of files to replicate according to file visiting frequency.
Hara [10] proposed three file replication protocols: Static
Access Frequency (SAF), Dynamic Access Frequency
and Neighborhood (DAFN) and Dynamic Connectivity
based Grouping (DCG). In SAF, each node replicates
its frequently queried files until its available storage
is used up. SAF may lead to many duplicate replicas
among neighboring nodes when they have the same in-
terested files. DAFN eliminates duplicate replicas among
neighbors. DCG further reduces duplicate replicas in a
group of nodes with frequent connections. It sums the
access frequencies of all nodes in a group and creates
replicas for files in the descending order. Though DAFN
and DCG enable replicas to be shared among neighbors,
neighboring nodes may separate from each other due
to node mobility. Also, they incur high traffic load in
identifying duplicates or managing groups.

Zhang et al [11] proposed to let each node collect
access statistics from neighbors to decide the creation
or relinquishment of a replica. Duong and Demeure [12]
proposed to group nodes with stable connections and let
each node checks its group members’ potential possibil-
ity of requesting a file and their storage status to decide
replicate the file or not. Also, each node notifies all other
nodes in the system about its newly created files by
broadcasting. Yin and Cao [9] proposed to cache popular
files on the intersection nodes of file retrieval paths.
Though it is effective for popular files, it fails to utilize all
storage space in nodes other than the intersection nodes.

Gianuzzi [21] investigated the probability of acquiring
a file, which has n replicas in the network, from the
potentially partitioned network. He also studied the
file retrieval performance when erasure coding [22] is
employed to segment files. Chen [23] discussed how to
decide the minimal number of mobile servers needed
to satisfy the requirement that every data item can be
obtained within at most k (k ≥ 1) hops by any node in
the system. Moussaoui et al. [8] proposed two steps of file
replication, primary replication and dynamic replication,
to disseminate replicas in the network in order to meet
user needs and prevent data loss in the case of network
partition. In the primary replication step, newly created
files are distributed evenly among nodes that are three
hops away from each other through replication. Later,
when the network topology changes, dynamic replica-
tion is conducted, in which each node checks its visiting
frequency to a file or the density of a file to make the
replication decision.

2.2 File Sharing in Disconnected MANETs/DTNs
Huang et al. [13] discussed how to cache files in servers
to realize the optimal file availability to mobile users in
WiFi-based wireless networks based on node mobility
pattern, AP topology and file popularity. However, the
file servers in this paper are fixed nodes connecting to
APs, while we consider a more general P2P scenario, in
which all mobile nodes are both file servers and clients.
Pitkanen and Ott [17] proposed the DTN storage module
to leverage the DTN store-carry-and-forward paradigm



0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2308211, IEEE Transactions on Computers

3

and make DTN nodes keep a copy of a message for a
longer period of time required by forwarding. Gao et
al. [14] proposed a cooperative caching method in DTNs
by copying each file to the node in each network central
location, which is frequently visited by other nodes.
When the central node is full, less-popular replicas are
moved to its neighbor nodes. However, central nodes
may be frequently changed, leading to frequent file
transfers and high overhead. QCR [15] leverages caching
for multimedia content dissemination in opportunistic
networks. It considers data retrieval delay and the prob-
ability that users will require the same content based
on previously experiences to decide the caching policy.
SEDUM [20] also uses replication to create redundant
messages in routing for DTNs, thereby enhancing rout-
ing success rate. PSEPHOS [16] considers three factors
including data access frequency, user preference and
node mobility to decide the data caching. The author
in [18] considers the contact duration in DTNs to better
improve data retrieval probability through replication.
In [19], both social community structures and contact
duration among nodes are considered to decide where
and how much to cache data in DTNs. However, these
methods fail to consider that the mobility of a node
affects the availability of files or messages and fur-
ther optimize the replication distribution to enhance file
availability or routing success rate.

2.3 Modeling Replication Optimization Problem
We present the general process to model the expected

file querying delay with file replication. We let m̂i be the
probability that a node’s newly met node in the coming
time interval is node i, which reflects the meeting ability
of the files on node i. We also use Xij to denote whether
node i owns file j or its replication. Then, the average
number of time intervals needed to meet a specific file,
say file j, can be represented as:

T̂j =
1

N∑
i=1

m̂iXij

(1)

Then, the average number of intervals needed to satisfy
a request is

T̂ =

F∑
j=1

qj T̂j =

F∑
j=1

qj
N∑
i=1

m̂iXij

, (2)

where qj is the probability of querying file j. With
Formula (2), we can formulate the global optimization
problem as minimizing T̂ , which can be further utilized
to deduce the optimal replication rule.

However, the calculation of m̂i may be complex and
makes the minimization problem non-trivial. We will
discuss how this is handled with the two common
mobility models in Section 3.

3 THEORETICAL ANALYSIS OF GLOBALLY
OPTIMAL FILE REPLICATION

3.1 Node Movement Models
Recall that we consider two types of MANETs (i.e., nor-
mal MANETs and disconnected MANETs) in this paper.
In the research area of MANETs, usually, the random
waypoint model (RWP) [24] is used for the normal
MANETs and the community-based mobility model [25]
is used for the disconnected MANETs (and DTNs). Thus,
we also use the two models to represent the two types
of MANETs in theoretical analysis. We leave the analysis
for other mobility models (i.e., created by Bonn Motion
Tool [26]) as our future work.

3.1.1 Random Waypoint Model for Normal MANETs
As some MANET replication protocols [10], [11], [21],
we use the random waypoint model (RWP) [24] to
model node mobility in normal MANETs. In RWP, nodes
repeatedly move to a randomly selected point at a
random speed, which means each node has roughly
similar probability to meet other nodes. However, nodes
usually have different probabilities of meeting nodes in
reality (i.e., nodes with faster speed can meet others more
frequently). We hence let each node have a randomly ob-
tained speed, rather than continuously varying a node’s
speed in different paths as in the normal RWP model.

3.1.2 Community-Based Mobility Model for Discon-
nected MANETs
The community-based mobility model [25] has been
used in some content dissemination or routing algo-
rithms for disconnected MANETs/DTNs [27], [28] to
depict node mobility. In this model, the entire test area
is split into different sub-areas, denoted as caves. Each
cave holds one community. A node belongs to one or
more communities (i.e., home community). The routines
and (or) social relationships of a node tend to decide its
mobility pattern. When moving, a node has probability
Pin to stay in the home community and probability
1 − Pin to visit a foreign community. A node moves
within its home communities for most of the time (i.e.,
Pin usually is large). Please refer to [25] for more detail.

3.1.3 Assumptions and Limitations
With above two mobility models, our analysis replies

on two assumptions: 1) the probability of meeting a
certain node is the same for all nodes (RWP model)
or all nodes in its home community (community-based
model) and 2) nodes move independently in the network
(both models). The two assumptions may not hold in
real cases, which limits the applicability of the analysis
results in our paper to different real scenarios. However,
the analysis results can provide instructions on file repli-
cation because the two models can represent key char-
acteristics in real mobility and have been widely used in
research works [10], [11], [21], [27], [28]. We also have
briefly discussed how to expand the analysis to general
scenarios, which do not have the two assumptions, in
Section 2.3 and 3.2.3. Due to the complexity of such
general cases, we leave the detailed research without the
two assumptions to future work.



0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2308211, IEEE Transactions on Computers

4

3.2 Theoretical Analysis

TABLE 1: Notations in analysis.

Notation Meaning
qj The probability of querying file j in the system
mi The probability that the next encountered node is node i
pj The probability of obtaining file j in the next encountered node
N Total number of nodes
Vi Node i’s meeting ability (i.e., frequency of meeting nodes)
Si Storage space of node i

V Average meeting ability of all nodes in the system
F Total number of files in the system
bj Size of file j
Xij Whether node i contains file j or not
Vjk Meeting ability of the kth node that holds file j
nj The number of nodes holding file j or its replicas
Aj Allocated resource for file j for replication
Tj Average number of time intervals needed to meet file j

T Average number of time intervals needed to meet a file
R Total amount of resource in the system
Pj Priority value of file j, Pj =

√
qj/bj

In this section, we theoretically analyze the influence
of the file replica distribution on the overall query
efficiency in MANETs under the two mobility models
following the process introduced in Section 2.3. Please
refer to Table 1 for the meanings of notations.

3.2.1 Optimal File Replication with the RWP model
In the RWP model, we can assume that the inter-meeting
time among nodes follows exponential distribution [29],
[30]. Then, the probability of meeting a node is inde-
pendent with the previous encountered node. Therefore,
we define the meeting ability of a node as the average
number of nodes it meets in a unit time and use it to
investigate the optimal file replication. Specifically, if a
node is able to meet more nodes, it has higher probability
of being encountered by other nodes later on. We use mi

to denote the probability that the next node a request
holder meets is node i. Then, mi is proportional to node
i’s meeting ability (i.e., Vi). That is

mi =
Vi∑N

k=1
Vk

=
Vi

V N
(3)

where N denotes the total number of nodes and V
denotes the average meeting ability of all nodes.

We use vector (Vj1, Vj2, . . . , Vjnj
) to denote the meet-

ing abilities of a group of nodes holding file j or its
replica, where nj is the number of file j (including
replicas) in the system. Then, the probability that a node
obtains its requested file j from its encountering node is
the sum of the probabilities of encountering nodes that
hold file j or its replica. That is,

pj =

N∑
i=1

miXij =

N∑
i=1

Vi

V N
Xij =

nj∑
k=1

Vjk

V N
(4)

where Xij is a zero-one variable that denotes whether
node i contains file j or its replica.

As stated above, a node’s probability of being encoun-
tered by other nodes is proportional to the meeting abil-
ity of the node. This indicates that files residing in nodes
with higher meeting ability have higher availability than
files in nodes with lower meeting ability. So we take into
account both meeting ability and storage in measuring

a node’s resource. When a replica is created in a node, it
occupies the memory on the node. Also, its probability
of being met by others is decided by the node’s meeting
ability. This means that the replica naturally consumes
both the storage resource and the meeting ability re-
source of the node. Therefore, we denote the resource
on a node by SiVi, in which Si denotes node i’s storage
space and Vi denotes its meeting ability. Then, the total
amount of resource in the system (R) is:

R =

N∑
i=1

SiVi (5)

Thus, the total resource allocated to file j is:

Rj = bj

nj∑
k=1

Vjk (6)

where bj is the size of file j. Based on Equation (6),
Equation (4) can be represented as

pj =

bj

nj∑
k=1

Vjk

bjV N
=

Rj

bjV N
(7)

Thus, the probability of meeting file j after k (k =
1, 2, 3, · · · ) time intervals (i.e., average inter-meeting time
among nodes) is

(1− pj)k−1pj
and the average number of time intervals needed for a
node to meet a node containing file j is

Tj =

∞∑
k=1

k(1− pj)k−1pj =
1

pj
=
bjV N

Rj
(8)

We use qj ∈ [0, 1] to denote the probability of a node’s
originating a request for file j in the system during a unit
of time period (

∑F
j=1 qj = 1). Then, the average number

of intervals needed to satisfy a request is

T =

F∑
j=1

qjTj =

F∑
j=1

qj
bjV N

Rj
= V N

F∑
j=1

qjbj
Rj

(9)

We aim to minimize the global file querying delay
(i.e., T ) by file replication. According to Equation (9),
T is decided by qj , bj and Rj , and the values of qj
and bj are decided by the system. Thus, the problem of
optimal resource allocation is then converted to finding
the optimal amount of resource (Rj) for each file j under
the restriction of total available resource in order to
achieve the minimum average querying delay.

Suppose Bj = qjbj , with Equations (5) and (9), the
problem of optimal resource allocation is expressed by

min(T ) = min{
F∑

j=1

qjbj
Rj
} = min{

F∑
j=1

Bj

Rj
} (10)

subject to:
F∑

j=1

Rj ≤ R.

Equation (9) also indicates that each Rj should be as
large as possible in order to minimize T . Therefore, we
assume all resources (R) are allocated.



0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2308211, IEEE Transactions on Computers

5

F∑
j=1

Rj = R (11)

By applying Formula (11), Formula (10) is changed to

min(T ) = min{
B1

R1
+

B2

R2
+· · ·+

BF

R− (R1 +R2 + · · ·+RF−1)
} (12)

Next, we try to find the value of Rj (1 ≤ j ≤ F − 1)
that satisfies Formula (12). Specifically, we first calculate
the first order (necessary) condition by differentiating T
on each Rj (1 ≤ j ≤ F − 1) respectively, and find the
value of Rj that makes the differentiated formula equal
0. The resultant formulas after differentiation are

B1

R2
1

− BF

{R − (R1 +R2 + · · ·+RF−1)}2
= 0 (13)

· · · · · · · · ·
BF−1

R2
F−1

− BF

{R − (R1 +R2 + · · ·+RF−1)}2
= 0 (14)

Combine all of the above F − 1 equations, we get
B1

R2
1

=
B2

R2
2

=
B3

R2
3

= · · · = BF−1

R2
F−1

=
BF

R2
F

(15)

To achieve the minimal average delay, the second order
(sufficient) condition should be larger than 0 as below:

−2B1

R3
1

− −2BF

{R − (R1 +R2 + · · ·+RF−1)}3
> 0 (16)

· · · · · · · · ·
−2BF−1

R3
F−1

− −2BF

{R − (R1 +R2 + · · ·+RF−1)}3
> 0 (17)

If Equation (15) is true, based on Equation (11), Formu-
las (16) and (17) can be transformed to below.

(
1

RF
− 1

R1
)
2B1

R2
1

> 0 (18)

· · · · · · · · ·
(

1

RF
− 1

RF−1
)
2BF−1

R2
F−1

> 0 (19)

When RF < Rj (j ∈ [1, F − 1]), Equations (18) and (19)
(and also the second order condition) are satisfied. Recall
that above result is obtained when we replace RF with
R−(R1+R2+ · · ·+RF−1) in Equation (10). If we replace
Rk (k ∈ [1, F ]) with R− (R1 + · · ·Rk−1 +Rk+1 + · · ·RF ),
the second order is also satisfied when Rk < Rj (j ∈
[1, F ], j 6= k). In summary, the second order is satisfied
when the resource allocated for one file is less than
the resource allocated for any other file. This condition
is always true because there always exists a file with
the minimum allocated resource. Therefore, as long as
the first order condition (Equation (15)) is satisfied, the
second order condition is also satisfied.

Then, according to Equation (11) and Equation (15),
we can see that the optimal allocation is

Rj =

√
Bj

F∑
k=1

√
Bk

R (j = 1, 2, 3, · · · , F ) (20)

This means that the optimal resource allocation is
achieved through the square root policy, i.e., the portion
of resource for file j is in direct proportion of the square

root of Bj :

Rj ∝
√
Bj ⇒ bj

nj∑
k=1

Vjk ∝
√
bjqj (21)

That is nj∑
k=1

Vjk ∝
√
qj
bj
⇒

nj∑
k=1

Vjk ∝ Pj (22)

We call
√
qj/bj the Priority Value (P ) of file j as it

represents the relative priority in acquiring resource for
the global optimization on querying delay.

Based on Formula (22), we derive the Optimal File
Replication Rule (OFRR) that gives the direction for the
optimal resource allocation for each file that leads to the
minimum average file querying delay under the RWP
model.

OFRR. In order to achieve minimum overall file querying
delay, the sum of the meeting ability of replica nodes of file j
should be proportional to Pj =

√
qj/bj .

3.2.2 Optimal File Replication with the Community-
Based Mobility Model

In this section, we conduct the analysis under the
community-based mobility model. Unless otherwise
specified, we use the same notations in Table 1 (which is
for the RWP model) but add ′ to each notation to denote
that it is for the community-based mobility model. Recall
that in the RWP model, we can assume that the inter-
meeting time of nodes follows exponential distribution.
Based on this assumption, we can calculate the proba-
bility that a newly met node is node i (i.e., mi), which is
used to find the expected time T to satisfy a request and
finally deduce OFRR to minimize T . However, under
the community-based mobility model, this assumption
does not hold [31]. This makes it difficult to calculate mi,
which makes the process of minimizing the overall delay
T ′ a formidable problem. To deal with this problem,
rather than considering meeting ability, we consider each
node’s satisfying ability. It is defined as a node’s ability
to satisfy queries in the system (denoted by V ′i ) and is
calculated based on the node’s capacity to satisfy queries
in each community.

We use Nc to denote the number of nodes in commu-
nity c. Then, community c holds Nc

N fraction of nodes
in the system. Node i’s satisfying ability to community
c depends on both the number of different nodes in c
it meets in a unit time period (denoted by Mic), and
the number of queries generated by nodes in c. In this
model, since nodes’ file interests are stable during a cer-
tain time period, we assume that each node’s querying
pattern (i.e., different querying rates for different files)
remains stable during a certain period of time.

Then, the number of nodes in a community represents
the number of queries for a given file generated in this
community. As a result, a file holder has low ability
to satisfy queries from a small community. Thus, we
integrate each community’s fraction of nodes (i.e., Nc

N )
into the calculation of the satisfying ability. Therefore,



0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2308211, IEEE Transactions on Computers

6

V ′i =

C∑
c=1

Mic
Nc

N
(23)

where C is the total number of communities.
Given nj nodes that hold file j or its replicas, we

again use vector (V ′j1, V
′
j2, . . . , V

′
jk, . . . , V

′
inj

) to denote
the satisfying abilities of these nodes. Then, the overall
ability of nodes in the system to satisfy requests for file
j (denoted by Oj) is the sum of all the satisfying abilities
times a redundancy elimination factor α.

Oj = α

nj∑
k=1

V ′jk (α ∈ [0, 1]) (24)

α is added because different holders of file j may meet
the same requester for file j in the same time unit. Since
the requester has only one request for file j, only the
first meeting satisfies the file request, and the subsequent
meetings do not satisfy any requests for file j. In other
words, α denotes the “discount” on the overall satisfying
ability considering the fact that the satisfying abilities of
different file holders may overlap.

Then, the number of time intervals (i.e., average inter-
meeting time among nodes) needed to satisfy a request
for file j is

T ′j =
1

Oj
=

1

α
nj∑
k=1

V ′jk

(25)

Recall that bj denotes the size of file j and qj denotes the
probability of initiating a request for file j from nodes
in the system. Similar to Equation (6), the total resource
(satisfying resource and storage resource) allocated to file

j can be represented by R′j = bj
nj∑
k=1

V ′jk. As a result,

the average number of time intervals needed to satisfy
a request in the system is

T ′ =

F∑
j=1

qjT ′j =

F∑
j=1

qj
1

α
nj∑
k=1

V ′jk

=
1

α

F∑
j=1

qjbj
R′j

(26)

Then, the problem of optimal resource allocation can be
expressed by

min(T ′) = min{
F∑

j=1

qjbj
R′j
} = min{

F∑
j=1

Bj

R′j
} (27)

subject to: F∑
j=1

R′j ≤ R.

We can find that Equation (27) is the same as Equa-
tion (10). Then, we follow the same process after Equa-
tion (10) and deduce the OFRR rule in disconnected
MANETs as

nj∑
k=1

V ′jk ∝
√
qj
bj
⇒

nj∑
k=1

V ′jk ∝ Pj (28)

We see that the OFRR under the community-based
mobility model (Equation (28)) is the same as the OFRR
deduced with the RWP model (Equation (22)) except that
V ′jk is the satisfying ability (Equation (23)) in the former
while is the meeting ability (defined in Table 1) in the
later. It is intriguing to find that Equation (23) turns to be

the same as the definition of Vi in Table 1 if the number
of community is 1. This means that the OFRR expressed
by Equation (22) is a special case of the OFRR expressed
by Equation (28). As a result, our previously deduced
OFRR can be the OFRR for MANETs under the two
mobility models.

It is interesting to find that the OFRR matches the
“square root assignment rule” derived by Kleinrock [32]
for the link capacity assignment in wireless communica-
tion to maximize the network efficiency. It also matches
the findings in [33] that when file servers may be un-
available due to node dynamism, the wired P2P content
distribution systems can achieve the maximum file hit
rate when available storage is allocated in proportion to
a constant value plus ln(qj/bj) for each file.

3.2.3 Extension to General Node Mobility Models
In the above two subsections, we deduced the OFRR

rule in RWP mobility model and community-based mo-
bility model following the basic idea in Section 2.3.
However, above analysis relies on two assumptions
mentioned in Section 3.1.3, which may not hold in
general node mobility models. Therefore, it is nontrivial
to extend above analysis to general cases directly. Specif-
ically, in certain mobility models, different nodes may
have different visiting preferences or patterns, making
different node’s probabilities of meeting node i in the
next encountering (m̂i) lack a direct general expression.

However, there are some ways to make the analysis in
general cases possible. For example, we can incorporate
new factors into m̂i to express each node’s distinct
pattern, e.g., active levels and community identities.
These factors usually represent how frequent a node
meets other nodes. We can also first measure the meeting
abilities of different nodes in a real scenario. Then, we
can assign labels to each node to indicate its rough
meeting ability. With these simplifications, m̂i can be
expressed and the analysis can be conducted. We leave
the research following such a direction to future work.

On the other hand, there are possibly fixed nodes in
the system, which are naturally supported in our anal-
ysis. This is because we only care a node’s storage and
meeting ability regarding creating file replicas. Though
fixed nodes do not move, they can meet other nodes,
which means their meeting abilities can be measured or
even formulated. As a result, fixed nodes are regarded
the same as mobile nodes in the system.

3.3 Meeting Ability Distribution in Real Traces
We measured the meeting ability distribution from real
traces to confirm the necessity to consider node meeting
ability as an important factor in the resources allocation
in our design. Specifically, for normal MANETs, we used
the Dartmouth trace [34], which was obtained through
an outdoor project in Dartmouth College. The trace
provides position records of 35 laptop nodes moving
randomly and independently across different sections of
an open field. For disconnected MANETs, we used the
MIT Reality trace [35] and the Haggle trace [36]. In the



0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2308211, IEEE Transactions on Computers

7

15

18

21

24

27

30

1 6 11 16 21 26 31

M
ee
tin

g 
ab
ili
ty
 (x
10

3 )
 

Node sequence

Dartmout trace

(a) In a connected MANET.

0

4

8

12

16

20

1 11 21 31 41 51 61 71 81 91

M
ee
tin

g 
ab
ili
ty
 (1

02
) 

Node sequence

Mit Reality trace
Haggle trace

(b) In disconnected MANETs.
Fig. 1: Meeting ability distribution.

former, 97 smart phones were distributed to students
and faculties at MIT. In the latter, 98 iMotes were as-
signed to scholars attending the Infocom’06 conference.
In both traces, nodes’ contact records were recorded.

For each trace, we measured the meeting abilities of all
nodes and ranked them in decreasing order, as shown
in Figure 1(a) and Figure 1(b). We see that in all the
three traces, node meeting ability is distributed in a
wide range. This matches our previous claim that nodes
usually have different meeting abilities. Also, it verifies
the necessity of considering node meeting ability as a
resource in file replication since if all nodes have similar
meeting ability, replicas on different nodes have similar
probability to meet requesters, and hence there is no
need to consider meeting ability in resource allocation.

4 DISTRIBUTED FILE REPLICATION PROTO-
COL

In this section, we propose a distributed file replication
protocol that can approximately realize the optimal file
replication rule (OFRR) with the two mobility models in
a distributed manner. Since the OFRR in the two scenar-
ios (i.e., Equation (22) and Equation (28)) have the same
form, we present the protocol in this section without
indicating the specific scenario. We first introduce the
challenges to realize the OFRR and our solutions to these
challenges. Then, we propose a replication protocol to
realize OFRR and analyze the effect of the protocol.

4.1 Challenges and Solutions to Achieve the OFRR
Challenge 1: resource allocation without a central
server. OFRR shows that in order to realize the globally
optimal querying delay, each file’s popularity (qj) and
size (bj), and the system resource (R) information (both
node storage size and moving ability) must be known in
order to decide the portion of resource for each file for
replica creation. Specifically, suppose there are F files in
the system with b1q1 · · · bF qF and total resource R, the
resource allocated to file j (Rj) should be

Rj = R×
√
bjqj/

F∑
k=1

√
bkqk (29)

Then, an intuitive way to achieve this goal is to setup
a central server to collect all above-mentioned informa-
tion, conduct the resource allocation for each file, and
distribute the information to file owners to replicate their
files. However, the nature of the distributed network,
node mobility and transmission range constraint become
obstacles of building such a central service. For example,

since nodes are constantly moving and have limited
communication ranges, it is impossible for each node
to update its information to or receive information from
the server timely. Thus, a severe challenge is to enable
a node to distributively figure out the proper portion of
resource for each of its files without a central server.

Even when each node knows
√
bjqj/

∑F

k=1

√
bkqk of

each of its files, the total amount of resources available
in the system may change due to node joins and depar-
tures, which makes it difficult for a node to calculate the
portion of resource of each of its file (Rj). For example,
suppose there are only two files in the system, say f1 and
f2, and the ratio of their allocated resources should be
4:1. If the total amount of resourceR = 40, the amount of
resource allocated to f1 is 32. If R = 60, the amount for
f1 should be adjusted to 48. Further, the time-varying file
popularity (qj) make the problem even more formidable.
Therefore, OFRR cannot be simply realized by letting
each node distribute replicas of a file until an absolute
amount of resource is used.

Solution to Challenge 1: resource competition. OFRR
(i.e, Formula (22)) requires that for each file, the sum of
its replica nodes’ meeting abilities,

∑nF

k=1 VFk, is propor-
tional to its priority value P . In other words, OFRR can
be shown by

P1/

n1∑
k=1

V1k = P2/

n2∑
k=1

V2k · · · = PF /

nF∑
k=1

VFk (30)

where nj (j ∈ [1, 2, · · · , F ]) represents the number of
replica nodes of file j. Then, we can let each file, say file
j, periodically compete for the resource with its current
Pj/

∑nj

k=1
Vjk. In one competition, the file with the highest

Pj/
∑nj

k=1
Vjk wins and receives resource for one replica.

After a file creates a replica, its Pj/
∑nj

k=1
Vjk decreases.

The competition stops when all available resource is
allocated and no one can win a competition. Thus, files
with larger Pj/

∑nj

k=1
Vjk win more competitions and

receive more resource and files with smaller Pj/
∑nj

k=1
Vjk

only win few competitions and receive less resource. The
competition gradually lets each file receive its deserved
portion of resource based on OFRR. By enabling file
owners to distributively compete for resource for their
files, we can realize OFRR without a central server.

Challenge 2: competition for distributed resource.
In a MANET, all available resource is scattered among
different nodes moving around in the network. This
poses three problems. First, different file owners are
scattered and can hardly gather together to conduct the
resource competition. Second, after a file is replicated to
a number of nodes, it is difficult to collect the popularity
of the replicas to update the P of the file. Third, since
the number of nodes met by a file owner is limited, a
single file owner cannot distribute replicas efficiently and
quickly. We propose a work-around for this problem.
Specifically, we regard a file and its newly created replica
as two different files, which participate in further compe-
tition independently with evenly split P . However, this
brings another challenge: since replica nodes of a file are
scattered in the network, how to ensure that the overall



0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2308211, IEEE Transactions on Computers

8

∑
Vjk is proportional to the overall P of the file? We

solve it in next subsection.
Note the competition used in the description is not

to show that resources are very limited. It is only to
show the process of resource allocation, which can be
viewed as a probability based resource allocation algo-
rithm. Such a solution increases the complexity of the
system. However, this is caused by the distributed nature
of MANETs. We will investigate how to reduce the
complexity in the next step. For example, we can check
whether files can reduce the frequency of competition
but still get the deserved amount of resources.

Solution to Challenge 2: distributive competition on
selective resources. In the solution to Challenge 1, each
file periodically competes for resource with its current
Pj/

∑nj

k=1
Vjk. However, as previously mentioned, it is

a challenge to keep the overall P proportional to the
overall

∑
Vjk while replica holders are scattered. We in-

directly resolve this problem by keeping the average V of
the replica nodes of a file close to V . Then, Formula (22)
can be re-expressed as

nj ∗ V ∝
√
qj
bj
⇒ nj ∝

√
qj
bj
⇒ nj ∝ Pj (31)

In such a case, when the number of replicas of each file
is proportional to its Pj =

√
qj/bj , OFRR is satisfied.

To attain this goal, we let each node deliberately select
a neighbor node to create replicas of its file so that the
average meeting ability of replica nodes of the file is
equal or closest to V . Considering the diverse mobility
of nodes in the network, a node should be able to find
replica nodes whose average meeting ability equals V
during its movement. Then, based on Equation (31),
each node only needs to consider the P of each file in
the resource completion. Upon winning a competition
for a file, a node splits the file’s P evenly between
the file and the replica. After this, the popularity of
each file/replica is continuously updated based on the
number of requests received for it in a unit time period,
which is used to update its priority value P .

When a replica is deleted in the competition, we
cannot reverse the process of priority split because it
is very difficult to track locations of the holders of
the original file in a distributed manner due to the
mobility of nodes in MANETs. Fortunately, we can use
the querying popularity q to handle this problem. In
this case, the qs (or P s) of other replicas of the file
increase since they receive more requests for the file as
the total amount of requests is stable. That is, the sum
of the replicas’ P s equals the overall P of the original
file j (Pi). The increase of priority value caused by the
replica deletion can be regarded as the reversed process
of priority split. As a result, the number of replicas of
each file is proportional to the sum of meeting ability of
its replica nodes, realizing Formula (22).

4.2 Design of the File Replication Protocol
The two solutions to handle the challenges in achieving
OFRR described above are maximal approximation to

File Priority 
competition

Replica 
creation & 

priority split

Success

Try at most K times

Select one neighbor 
by the OFRR RULE

Failure

Fig. 2: Replica distribution process.

realize the OFRR in a distributed manner. Based on the
solutions, we propose the Priority Competition and Split
file replication protocol (PCS). We first introduce how a
node retrieves the parameters needed in PCS and then
present the detail of PCS.

In PCS, each node dynamically updates its meeting
ability (Vi) and the average meeting ability of all nodes
in the system (V ). Such information is exchanged among
neighbor nodes. We explain the detail of this step in
Section 4.3. Each node also periodically calculates the
Pj =

√
qj/bj of each of its files. The qj is calculated by

qj = uj/U , where uj and U are the number of received
requests for the file and the total number of queries
generated in a unit of time period, respectively. Note
that U is a pre-defined system parameter.

In the solution to Challenge 2, nodes replicate files
distributively and select replicate nodes to ensure that
the average meeting ability of replica nodes of a file the
closest to V . That is, Vn′

j
≈V , where n′j is the number of

created replicas of file j and Vn′
j

is the average meeting
ability of these replica nodes. Therefore, each node needs
to keep track of n′j and Vn′

j
of each of its file. After

creating a replica, the node increases n′j by 1 and updates
Vn′

j
using the V of the new replica node.

With the above information, we introduce the process
of the replication of a file in PCS. Based on OFRR, since a
file with a higher P should receive more resource, a node
should assign higher priority to its files with higher P
to compete resource with other nodes. Thus, each node
orders all of its files in descending order of their P s
and creates replicas for the files in a top-down manner
periodically. Algorithm 1 presents the pseudo-code for
the process of PCS between two encountered nodes. In
detail, suppose node i needs to replicate file j on the
top of the list, as shown in Figure 2, it keeps trying to
replicate file j on nodes it encounters until one replica
is created or K attempts have been made. If file j is
replicated, its P is split and it is inserted to its new place
in the list. Next, the node fetches the file from the top of
the list and repeats the process. If file j fails to replicate
after K attempts, the node stops launching competition
until the next period.

Following the solution to Challenge 2, a replicating
node should keep the average meeting ability of the
replica nodes for file j around V . Node i first checks
the meeting abilities of neighbors and then chooses the
neighbor k that does not contain file j and makes V new

n′
j

=

(n′jVn′
j
+Vk)/(n

′
j +1) the closest to V as the replica node

candidate. It is possible that V new
n′
j

is far away from V .
Therefore, we set a deviation range r. If creating a replica
in the selected neighbor makes (V new

n′
j
−V ) > r, then the



0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2308211, IEEE Transactions on Computers

9

node does not replicate file j in the selected neighbor
until it has a different set of neighbors.

In the case that (V new
n′
j
− V ) ≤ r, if the selected

neighbor’s available storage is larger than the size of file
j (Sj), it creates a replica for file j directly. Otherwise,
a competition is launched among the replica of file j
and replicas already in the neighbor node based on
their P s. The priority value of the new replica is set to
half of the original file’s P . According to the solution
to Challenge 1, the probability that a replica wins the
resource competition is proportional to its P , i.e., a
replica’s probability of being selected to be removed
is inversely proportional to its P . Then, suppose there
are d replicas in competition, we let each replica be
responsible for a range that equals its 1/P in range space
[0,

∑d
k=1 1/Pk]. The neighbor node randomly chooses a

number in [0,
∑d

k=1 1/Pk], and the replica whose range
owns the number is selected to be removed. The neigh-
bor node repeats above process until available storage is
no less than the size of file j.

If file j is among the selected files, it fails the compe-
tition and will not be replicated in the neighbor node.
Otherwise, all selected files are removed and file j is
replicated. If file j fails, node i will launch another
attempt for file j until the maximum number of attempts
(K) is reached. The setting of K attempts is to ensure that
each file can compete with a sufficient subset of replicas
in the system. If node i fails to create a replica for file j
after K attempts, then replicas in node i with smaller P s
than file j are unlikely to win a competition. Thus, at this
moment, node i stops replicating files until next round.
Finally, all available resource in the system is allocated
to replicas according to their P s (i.e., OFRR is realized).

According to the Solution to Challenge 2, we regard
file j’s replica as a “different” file from file j in PCS.
Therefore, if node i successfully creates a replica for
file j, it splits the file’s P evenly between file j and
the new replica. Thus, each file’s priority is P/2. After
the splitting, the two copies of file j involve in further
resource competition independently. Note that we do not
split files in the PCS algorithm but split the priority value
of a file when a replica is created.

The replication for a file stops when the communi-
cation session of the two involved nodes ends. Then,
the node will continue the replication process for the
file again after excluding the disconnected node from
the neighbor node list. Since the popularity of files’
popularity and P s and available system resource change
as time goes on, each node periodically executes PCS
to dynamically handle these time-varying factors. Each
node also periodically calculates the popularity of its
files (qj) to reflect the changes on file popularity (due
to node querying pattern and rate changes) in different
time periods. The periodical file popularity update can
automatically handle file dynamism. The popularity of
newly added files will be calculated and hence these files
will be considered in resource allocation. Similarly, those
of deleted files will not be calculated and hence these file
will not be considered in resource allocation.

——————————————————————————————
Algorithm 1 Pseudo-code of PCS between node i and k.
——————————————————————————————
i.createReplicasOn(k) //node i tries to create a replica on node k
k.createReplicasOn(i) //node k tries to create a replica on node i
Procedure createReplicasOn (node)

nCount ← 0 //initialize a count
this.orderFilesByP() //order files by priority value
For (each file f in current node) //try to replica each file

If (node.compete4File(f) == true) //competition
node.createAReplica4(f) //create a replica if win

else
nCount ← nCount+1

If nCount ≥ K //try at most K times
Break

end Procedure
Procedure compete4File() //Compete for file j

While (nRemainningMem < j.size())
nSum ← nTotal ← nRandom ← fFile ← 0 //initilization
For (each file f (including j) in current node)

nTotal ← nTotal+1/Pf

nRandom ← generateARandomNumber() % nTotal
For (each file f (including j) in current node)

nSum ← nSum+1/Pf

If (nSum >= nRandom)
fFile = f Break //pick the file

If (fFile = j) //j is the picked file, competition fails
return false

Else //win the competition
select fFile

delSelectedFiles() //delete the selected files
return true

end Procedure
——————————————————————————————

4.3 How to Collect Meeting Ability Information
In a MANET, nodes periodically exchange beacon mes-
sages to discover neighbor nodes. The frequency of the
beacon messages depends on the mobility of nodes. The
size of a beacon message usually is several bytes. To save
communication cost, the values of Vi and V are piggy-
backed into beacon messages. Since Vi and V are only
several bytes, the piggybacking only slightly increases
the size of the beacon message. In normal MANETs,
a node’s meeting ability (Vi) is simply measured by
the frequency it meets other nodes. In disconnected
MANETs, a node needs to know the distribution of
different communities to calculate its satisfying ability
(Equation (23)). We then let each node piggyback its
community ID and the community information it knows
in the beacon message. Also, it’s hard to collect the
satisfying abilities of all nodes in distributed MANETs
in a timely manner since nodes are sparsely distributed.
We let each node simply use the average meeting ability
of all so far encountered nodes as that for all nodes in
the system. As nodes meet more and more nodes, the
calculated value can generally represent that of all nodes.

4.4 Analysis of the Effectiveness of PCS
In this section, we briefly prove the effectiveness of PCS.
We refer to the process in which a node tries to copy a
file to its neighbors as one round of replica distribution.

Recall that when a replica is created for a file with P ,
the two copies will replicate files with priority P/2 in
the next round. This means that the creation of replicas
will not increase the overall P of the file. Also, after
each round, the priority value of each file or replica is



0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2308211, IEEE Transactions on Computers

10

updated based on the received requests for the file. Then,
though some replicas may be deleted in the competition,
the total amount of requests for the file remains stable,
making the sum of the Ps of all replicas and the original
file roughly equal to the overall priority value of the
file. Then, we can regard the replicas of a file as an
entity that competes for available resource in the system
with accumulated priority P in each round. Therefore, in
each round of replica distribution, based on our design
of PCS, the overall probability of creating a replica for
an original file j, denoted by Psj , is proportional to its
overall Pj . That is:

Psj ∝ Pj (32)

Then, suppose total M rounds of competition are con-
ducted, the expected number of replicas, denoted by nj ,
for file j is

nj =MPsj ⇒ nj ∝ Pj (33)

Therefore, we conclude that the PCS can realize Equation
(31), in which the number of replicas of each file is
proportional to its P , thereby realizing the OFRR.

We further briefly discuss the security and incentive
considerations for PCS in Appendix B .

5 PERFORMANCE EVALUATION IN NORMAL
MANETS WITH THE RWP MODEL

To evaluate the performance of PCS in normal MANETs,
we conducted experiments on both the GENI Orbit
testbed [37], [38] and the NS-2 [39] simulator. The
GENI testbed consists of 400 nodes equipped with wire-
less cards. We used the Dartmouth real-world MANET
trace [34], which provides the mobility trace of 35 laptops
moving in an open field, to drive node mobility in both
experiments. In order to validate the adaptability of
PCS, we used two routing protocols in the experiments.
We first used the StaticWait protocol [40] in the GENI
experiment, in which each query stays on the source
node waiting for the destination. We then used a proba-
bilistic routing protocol (PROPHET) [6], in which a node
routes requests to the neighbor with the highest meeting
ability. We set a larger TTL for Static Wait since it needs
more time to find a file holder. We used 95% confidence
interval when handling the experimental results.

We evaluated the performance of PCS in normal
MANETs in comparison with several MANET replica-
tion algorithms: SAF [10], DCG [10], PDRS [12] and
CACHE [9]. The details of these protocols can be found
in Section 2. To better validate our analysis, we also
compared PCS with Random, which places replicas on
nodes randomly, and OPTM, which is a centralized
protocol that calculates the ideal number of replicas for
each file based on our derived optimal replication rule.
OPTM represents the best possible performance can be
obtained by the OFRR. In order to evaluate our protocol
under different network sizes and node mobilities, we
also conducted simulation on the NS-2 with different
network sizes and node mobilities synthesized by the
modified RWP model. Due to page limit, the results of
these tests are shown in Appendix A.

Table 2 shows the parameters used in experiments,
unless otherwise specified. The parameters are deter-
mined by referring to the settings in [9], [41] and the real
trace. According to the works in [9], [42], we determined
the file size and storage space on each node. As the
work in [33], the probability of originating requests for
different files in each node followed a Zipf distribution
and the Zipf parameter was set to 0.7. Initially, files
were evenly distributed to each node and no replica
existed in the system. In the synthesized mobility, the
speed of a node was randomly chosen from the range
of [s/2, 3s/2], where s is the configured average node
movement speed. Since the real trace does not indicate
the communication range of each node, we set the
communication range to 100m in the simulation and to
60m in the GENI experiment in order to see the influence
of different transmission ranges on the performance. We
evaluated the performance of PCS with K = 3.

We used the following metrics in the experiments:
• Hit Rate. This refers to the percent of requests that

are successfully resolved by either original files
or replicas. This metric shows the effectiveness of
replication protocols in enhancing file availability.

• Average delay. This is the average delay of all re-
quests. To make the comparison fair, we included all
requests in the calculation. For unresolved requests,
we set their delays as the TTL. This metric shows
the efficiency of replication protocols in terms of file
querying delay.

• Replication cost. This is the total number of messages
generated in creating replicates. This metric shows
the overhead of replication protocols.

• Cumulative Distribution Function (CDF) of the propor-
tion of replicas. This is the CDF of the proportion of
replicas of each file. This metric reflects the amount
of resource allocated to each file for replication.

TABLE 2: Simulation parameters.
Real trace Synthesized mobility

Environment Parameters GENI / NS-2 NS-2
Simulation area 600m× 300m 1000m× 1000m
Node Parameters
Number of nodes 35 60
Communication range 60m / 100m 250m
Average movement speed - 6m/s
The size of a file (kb) 1− 10 1− 10
Number of files in each node 10 10
Storage space for replicas (kb) 50 50
Query Parameters
Initialization period 500s / 800s 200s
Querying period 1500s / 1200s 600s
TTL of each request 1000s / 200s 200s
Total time for each test 3000s / 3000s 1000s

5.1 Performance in the Trace-Driven GENI experi-
ments
5.1.1 Hit Rate and Average Delay
Table 3 shows the results of each protocol in the trace-
driven experiments on GENI. We see that the hit rates in
different replication protocols follow Random<CACHE
<SAF<PDRS<DCG<PCS<OPTM and the average de-
lays follow a reverse order: Random>CACHE>SAF>
PDRS>DCG>PCS>OPTM. We see that OPTM and PCS



0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2308211, IEEE Transactions on Computers

11

lead to higher hit rate and lower average delay than
others. This is attributed to the guidance of OFRR,
which aims to minimize the average querying delay by
considering both storage and meeting ability as resource
to enhance overall file availability. PCS generates slightly
lower hit rate and around 20% higher average delay than
OPTM. This is because OPTM has the knowledge of all
information needed in OFRR beforehand, while PCS has
to distribute replicas in a fully distributed manner.

On the contrary, other protocols only replicate files
locally, creating redundant replicas and failing to achieve
high file availability under node mobility. Random has
the worst performance on hit rate and average delay.
This is because Random only randomly creates replicas
for files and fails to assign more resources to popu-
lar files, which are queried more frequently by nodes.
CACHE only utilizes the storage on intersection nodes,
which indicates that it fails to fully utilize storage space
in all nodes. Therefore, it cannot create as many replicas
as other protocols and exhibits a low hit rate and a
hight delay. In SAF, each node replicates its frequently
queried files until its memory is filled up. Then, almost
all resources are allocated to popular files. Therefore,
SAF cannot optimize query delay globally. In PDRS,
a node replicates files interested by its neighbors that
have less storage resource than itself. However, as the
sharing of replicas is not in the whole group, PDRS only
renders a slightly performance improvement over SAF.
DCG further improves SAF and PDRS by conducting the
file replication on a group level. It eliminates duplicate
replicas among group members and uses released mem-
ory for other replicas, thereby generating higher hit rate
and smaller average delay.

We find that the 1st percentiles of the delays of all
protocols are 0.01. This is because some requests are
immediately satisfied by direct neighbors. The 99th per-
centiles of the delays of the protocols approximately
follow the relationship on average delay. Above results
justify that PCS enhances the file searching efficiency by
its global optimization of file availability. The fact that
Random leads to worse performance than all methods
that give priority to popular files when creating replicas
also justify that a resource allocation strategy is neces-
sary for file availability optimization.

TABLE 3: Experimental results of the trace-driven GENI experiments.
Protocol Hit rate Average / 1% / 99% delay (s) Replication cost
Random 0.840139 263.176 / 0.01 / 991.9843 13387
CACHE 0.842454 260.469 / 0.01 / 994.2487 0
SAF 0.857341 259.1768 / 0.01 / 997.1095 0
PDRS 0.863074 256.1983 / 0.01 / 991.2384 175140
DCG 0.878559 251.3287 / 0.01 / 993.3947 67549
PCS 0.898823 240.7031 / 0.01 / 990.4522 28983
OPTM 0.910370 195.1776 / 0.01 / 990.1296 14542

5.1.2 Replication Cost

From the table, we find that the replication costs of
different protocols follow PDRS>DCG>PCS>OPTM≈
Random>SAF=CACHE=0. PDRS shows the highest
replication cost because it needs to broadcast each new
file to all nodes in the system. DCG incurs moderate

replication cost because group members need to ex-
change information to reduce duplicate replicas. PCS has
a low replication cost because each node only tries at
most K times to create a new replica for each file it
holds. OPTM and Random have a very low cost since
nodes only need to communicate with the central server
for replica list. SAF and CACHE have no replication cost
since they do not need to exchange information among
nodes for file replication. However, SAF generates a lot
of redundant replicas, and Random and CACHE lead to
low performance.

5.1.3 Replica Distribution
Figure 3 shows the CDF of the proportion of re-

source allocated to each file for replica creation in dif-
ferent protocols. From the figure, we find that PCS
exhibits the closest similarity to OPTM while other
protocols follow: DCG≈Random�CACHE≈PDRS�SAF,
where � means closer similarity to OPTM. Combining

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 35 70 105 140 175 210 245 280 315

CD
F 
of
 th

e 
pr
op

or
tio

n 
of
 re

pl
ic
as
 

File sequence in decreasing order of popularity

PCS DCG
SAF CACHE
OPTM PDRS
Random

PCS

DCG

OPTM

SAF

PDRS
CACHE Random

Fig. 3: CDF of the resource allo-
cated to replicas in trace-driven
GENI experiment.

the results on average de-
lay, we find an interest-
ing phenomenon: except
CACHE and Random, a
protocol with closer sim-
ilarity to OPTM has less
average delay. This proves
the correctness of our the-
oretical analysis and the
resultant OFRR rule ex-
pressed in Formula (22).
CACHE has a low performance because it does not
utilize all storage space, though it exhibits similarity with
PDRS. Random creates replicas for each file randomly
without considering their popularity, leading to a low
performance since popular files are not replicated with
priority. We also observe that the CDFs of the proportion
of resource allocated to replicas of DCG, CACHE, PDRS
and SAF increases to 0.9 quickly. This is because they
allocate most resources to popular files, resulting in a
lot of replicas for these files. Though these protocols can
reduce the delay of queries for popular files, they cannot
reduce the delay for unpopular files. PCS is superior
over these protocols because it can globally reduce the
query delay for all files.

5.2 Performance in the Trace-Driven Simulation
5.2.1 Hit Rate and Average Delay
Table 4 shows the results of each protocol in the trace-
driven experiments on NS-2. We see the hit rates and
average delays of the seven protocols follow the same
relationship as in Table 3 due to the same reasons. We
find that the average delays of the seven protocols are
much less than those in the GENI experiment. This is
caused by two reasons. First, the trace-driven simulation
adopts the PROPHET for file searching, which can locate
files more quickly than the StaticWait searching protocol
used in the GENI experiment. Second, the communi-
cation range of two nodes (100m) in the simulation is
larger than that in the GENI experiment (60m), leading



0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2308211, IEEE Transactions on Computers

12

to shorter searching delay since a node can reach more
neighbors. The hit rates of the seven protocols are lower
than those in the GENI experiment. This is because the
trace-driven simulation used much smaller TTL. The
relative performance between different protocols in the
simulation matches that in the GENI experiment, which
further proves the effectiveness of PCS.

5.2.2 Replication Cost
From Table 4, we find that the replication costs
of different protocols follow PDRS>DCG>PCS>OPTM
≈Random>SAF=CACHE=0. This matches the results in
Table 3 and the reasons are the same.

5.2.3 Replica Distribution
Figure 4 shows the CDF of the proportion of

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 35 70 105 140 175 210 245 280 315

CD
F 
of
 th

e 
pr
op

or
tio

n 
of
 re

pl
ic
as
 

File sequence in decreasing order of popularity

PCS DCG
SAF CACHE
OPTM PDRS
Random

PCS

DCG

Random

SAF
PDRS

CACHE

OPTM

Fig. 4: CDF of the resource allo-
cated to replicas in trace-driven
simulation.

resource allocated to repli-
cas of each file in the
seven protocols. From the
figure, we find similar
trend as that in Figure 3.
That is, except CACHE
and Random, a proto-
col with closer similar-
ity to OPTM has less av-
erage delay. This further
proves the correctness of
our analysis through the trace-driven simulation.

TABLE 4: Simulation results of the trace-driven experiments.
Protocol Hit rate Average / 1% / 99% delay (s) Replication cost
Random 0.828652 67.9564 / 0.00175637 / 193.259 4695
CACHE 0.830038 64.6417 / 0.00172859 / 191.703 0
SAF 0.837664 62.1525 / 0.00172887 / 190.896 0
PDRS 0.842982 61.0969 / 0.00172652 / 191.279 246454
DCG 0.848559 59.0611 / 0.00172883 / 189.270 14510
PCS 0.868749 50.2859 / 0.00172885 / 188.550 9846
OPTM 0.878677 41.2282 / 0.00172874 / 188.428 4721

6 PERFORMANCE EVALUATION IN DISCON-
NECTED MANETS WITH THE COMMUNITY-
BASED MOBILITY MODEL
In order to evaluate the performance of PCS in dis-

connected MANETs, we conducted event-driven exper-
iments with the MIT Reality project [35] trace and the
Haggle project [36] trace. The MIT Reality trace lasts
about 2.56 million seconds (Ms), while the Haggle project
trace lasts about 0.34 Ms. Both traces represent typi-
cal disconnected MANET scenarios. We used the Static
Waiting routing protocol [40] in this test.

We evaluated the performance of PCS in comparison
with DCG [10], CACHE-DTN [14], OPTM, and Random.
CACHE-DTN is a caching algorithm for DTNs. It caches
each file in the central node of each network center
location (NCL). If a central node is full, its replicas are
stored in its neighbor nodes according to their popu-
larity. A higher popular replica is stored closer to the
central node. The experiment settings and measurement
metrics are the same as in Section 5 unless otherwise
specified below. The total number of queries was set to
6000∗Rp, and Rp is the query rate and was varied in the

range of [2, 6]. In the experiment with the Haggle trace
and the MIT Reality trace, all queries were generated
evenly in the time period of [0.3Ms, 2.3Ms] and [0.05Ms,
0.25Ms], and the TTL of each query was set to 0.3Ms
and 0.04Ms, respectively. We again adopted the 95%
confidence interval when handling experimental data.

6.1 Hit Rate

Figure 5(a) and Figure 6(a) plot the hit rates of
the five methods with the Haggle trace and the
MIT Reality trace, respectively. We see that in both
scenarios, the hit rates follow OPTM>PCS>CACHE-
DTN>DCG>Random. OPTM and PCS achieve higher
hit rate than other methods because they follow the
deduced OFRR. However, since PCS realizes OFRR in a
distributed way, it presents slightly inferior performance
compared to OPTM. CACHE-DTN considers the inter-
mittent connection properties of disconnected MANETs
and replicates each file to every NCL, leading to high
date accessibility, though not optimal. DCG only con-
siders temporary connected group for data replication,
which is not stable in disconnected MANETs. Therefore,
it has a low hit rate. Random assigns resources to files
randomly, which means it cannot create more replicas
for popular files, leading to the lowest hit rate. Such a
result proves the effectiveness of the proposed PCS on
improving the overall file availability and the correctness
of our derived OFRR for disconnected MANETs.

We also see that the hit rates of different methods
fluctuate slightly when the query rate increases. This
is because the hit rate is not affected by the query
rate. Even when the number of query increases, the
file availability remains on the same level and leads to
similar hit rates, as shown in the two figures.

6.2 Average Delay

Figure 5(b) and Figure 6(b) demonstrate the average
delays of the five methods with the Haggle trace and the
MIT Reality trace, respectively. We find that with both
traces, the average delays follow OPTM<PCS<CACHE-
DTN<DCG<Random, which is in reverse order of the
relationship between the five methods on hit rate as
shown in Figure 5(a) and Figure 6(a). This is because
the average delay is reversely related to the overall
data availability. As explained in above section, OPTM
and PCS have high data availability since they follow
OFRR, CACHE-DTN presents higher data availability
than DCG because CACHE-DTN distributes every file
to different NCLs while DCG only shares data among
frequently encounterd neighbor nodes, and popular files
in Random only receive equal amount of resources
for replicas. Such results further validate the proposed
OFRR and PCS in disconnected MANETs.

We again find that the average delays of different
methods vary slightly when the query rate increases. It is
caused by the same reason as explained in above section.



0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2308211, IEEE Transactions on Computers

13

0.63

0.66

0.69

0.72

0.75

0.78

0.81

0.84

2 3 4 5 6

Hi
t r
at
e

Query rate

PCS DCG
CACHE‐DTN OPTM
Random

(a) Hit rate.

16

20

24

28

32

2 3 4 5 6

Av
er
ag
e 
de

la
y 
(x
10

3 s
)

Query rate

PCS DCG
CACHE‐DTN OPTM
Random

(b) Average delay.

8.0E+05

2.8E+06

4.8E+06

6.8E+06

8.8E+06

2 3 4 5 6

Re
pl
ic
at
io
n 
co
st

Query rate

PCS DCG
CACHE‐DTN OPTM
Random

(c) Replication cost.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 110 220 330 440 550 660 770 880

CD
F 
of
 th

e 
pr
op

or
tio

n 
of
 re

pl
ic
as
 

File sequence in decreasing order of popularity

PCS DCG
CACHE‐DTN OPTM
Random

(d) CDF of allocated resources.

Fig. 5: Performance of the file replication protocols with the Haggle trace.

0.40

0.44

0.48

0.52

0.56

0.60

0.64

0.68

2 3 4 5 6

Hi
t r
at
e

Query rate

PCS DCG
CACHE‐DTN OPTM
Random

(a) Hit rate.

22

25

28

31

34

37

2 3 4 5 6

Av
er
ag
e 
de

la
y 
(x
10

4 s
)

Query rate

PCS DCG
CACHE‐DTN OPTM
Random

(b) Average delay.

8.0E+05

2.8E+06

4.8E+06

6.8E+06

2 3 4 5 6

Re
pl
ic
at
io
n 
co
st

Query rate

PCS DCG
CACHE‐DTN OPTM
Random

(c) Replication cost.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 110 220 330 440 550 660 770

CD
F 
of
 th

e 
pr
op

or
tio

n 
of
 re

pl
ic
as
 

File sequence in decreasing order of popularity

PCS DCG
CACHE‐DTN OPTM
Random

(d) CDF of allocated resources.

Fig. 6: Performance of the file replication protocols with the MIT Reality trace.

6.3 Replication Cost
Figure 5(c) and Figure 6(c) show the replication costs
of the five methods with the Haggle trace and the MIT
Reality trace, respectively. OPTM and Random have the
lowest replication cost while the costs of the other three
methods follow PCS<CACHE-DTN<DCG. In OPTM
and Random, nodes only need to contact the central
server for replica list, leading to the lowest cost. DCG
generates the highest replication cost since group mem-
bers need to exchange a large amount of information to
remove duplicate replicas. CACHE-DTN forwards each
file to every NCL, leading to moderate replication cost.
In PCS, a node tries at most K times to create a replica for
each of its files, producing much lower replication cost
than CACHE-DTN and DCG. Such a result demonstrates
the high energy-efficiency of PCS. Combining all above
results, we conclude that PCS has the highest overall file
availability and efficiency compared to existing methods,
and OFRR is effective in guiding optimal file replication
in disconnected MANETs.

6.4 Replica Distribution
Figures 5(d) and 6(d) show the CDF of the proportion

of resources allocated to replicas in each protocol in the
tests with the Haggle trace and the MIT Reality trace, re-
spectively. We see in both figures, PCS present very close
similarity to OPTM and the other two follow CACHE-
DTN>PCS. Random also present close similarity on the
CDF curve to OPTM. However, the difference between
PCS and Random is that PCS assigns priority for popular
files while Random gives even priority to all files. Since
popular files are queried more frequently, Random still
leads to a low performance. For other three methods that
favor popular files, we find that the closer similarity with
OPTM a protocol has, the better overall performance it
has. Such a result also matches what we observed in the
test in connected MANETs. This proves the correctness
of our theoretical analysis and the resultant OFRR rule
for disconnected MANETs.

7 ADDITIONAL TEST
In this section, we conducted additional experiments

show the influence of K in PCS on file availability.
Specifically, we varied K from 1 to 4 to show its influence
on the performance of PCS with both mobility models.
We followed the same setting as in Section 5 and 6. In
the test with the community-based mobility model, we
set the query rate to a median value of 4. The test results
are shown in Table 5. In the table, we use Dt, Hg and
MIT to denotes the Dartmouth trace, the Haggle project
trace and the MIT Reality trace, respectively.

We see that when K increases, both the performance
and the replication cost of PCS increase. This is because
when K increases, each file has more chances to compete
with others to create replicas and gets the portion of
resources based on the OFRR rule. Therefore, resources
are allocated more strictly following the OFRR rule,
leading to better performance. On the other hand, more
trials also means more replication costs. Therefore, a
balance on the performance and replication cost should
be considered when deciding K, which is an interesting
topic for our future work.

TABLE 5: Influences of Different Ks.
Hit rate Ave. delay (x103s) Rep. Cost (x104)

K Dt Hg MIT Dt Hg MIT Dt Hg MIT
1 0.861 0.799 0.618 0.0515 26.9 294.9 0.4 70 59
2 0.866 0.805 0.628 0.0510 25.8 288.4 0.7 124 113
3 0.869 0.814 0.635 0.0502 24.3 286.8 1.0 188 163
4 0.871 0.821 0.644 0.0497 23.5 284.2 1.2 237 215

8 CONCLUSION
In this paper, we investigated the problem of how

to allocate limited resources for file replication for the
purpose of global optimal file searching efficiency in
MANETs. We first theoretically analyzed the influence
of replica distribution on the average querying delay
under constrained available resource under two mobil-
ity models, and derived an optimal replication rule to
allocate the limited resource to file replicas in order to
minimize the average querying delay. Unlike previous



0018-9340 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2014.2308211, IEEE Transactions on Computers

14

protocols that only consider storage space as resource,
we also consider file holder’s ability to meet nodes as
available resource since it also affects the average query-
ing delay. This new concept enhances the correctness of
the deduced rule and the effectiveness of the accordingly
developed replication protocol. Finally, we designed the
Priority Competition and Split replication protocol (PCS)
that realizes the proposed optimal replication rule in a
fully distributed manner. Extensive experiments on both
real-world GENI testbed, NS-2, and event-driven simula-
tor with real trace and synthesized mobility confirm both
the correctness of our theoretical analysis and the effec-
tiveness of PCS in MANETs. In this study, we focus on a
static set of files in the network. In our future work, we
will theoretically analyze a more complex environment
including file dynamics (file addition and deletion, file
timeout) and dynamic node querying pattern.

ACKNOWLEDGMENT

This research was supported in part by U.S. NSF grants
OCI-1064230, CNS-1049947, CNS-1025652, CNS-1025649,
CNS-1057530 and CNS-0917056, Microsoft Research Fac-
ulty Fellowship 8300751, and Sandia National Laborato-
ries grant 10002282.

REFERENCES
[1] “Qik,” http://qik.com/.
[2] “Flixwagon,” http://www.flixwagon.com/.
[3] C. Palazzi and A. Bujari, “A delay/disruption tolerant solution

for mobile to mobile file sharing.” in Proc. of IFIP/IEEE Wireless
Days, 2010.

[4] Y. Tseng, S. Ni, and E. Shih, “Adaptive approaches to relieving
broadcast storms in a wireless multihop mobile ad hoc network,”
in Proc. of ICDCS, 2001, pp. 481–488.

[5] B. Chiara, C. Marco, and et al., “Hibop: A history based routing
protocol for opportunistic networks,” in Proc. of WoWMoM, 2007.

[6] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic routing in
intermittently connected networks,” MC2R, vol. 7, no. 3, pp. 19–
20, 2003.

[7] F. Li and J. Wu, “MOPS: Providing content-based service in
disruption-tolerant networks,” in Proc. of ICDCS, 2009.

[8] S. Moussaoui, M. Guerroumi, and N. Badache, “Data replication
in mobile ad hoc networks,” in Proc. of MSN, 2006, pp. 685–697.

[9] L. Yin and G. Cao, “Supporting cooperative caching in ad hoc
networks,” TMC, vol. 5, no. 1, pp. 77–89, 2006.

[10] T. Hara and S. K. Madria, “Data replication for improving data
accessibility in ad hoc networks,” TMC, vol. 5, no. 11, pp. 1515–
1532, 2006.

[11] J. Zheng, J. Su, K. Yang, and Y. Wang, “Stable neighbor based
adaptive replica allocation in mobile ad hoc networks,” in Proc.
of ICCS, 2004.

[12] H. Duong and I. Demeure, “Proactive data replication semantic
information within mobility groups in MANET,” in Proc. of
Mobilware, 2009.

[13] Y. Huang, Y. Gao, and et al., “Optimizing file retrieval in delay-
tolerant content distribution community,” in Proc. of ICDCS, 2009.

[14] W. Gao, G. Cao, A. Iyengar, and M. Srivatsa, “Supporting cooper-
ative caching in disruption tolerant networks.” in Proc. of ICDCS,
2011.

[15] J. Reich and A. Chaintreau, “The age of impatience: optimal repli-
cation schemes for opportunistic networks.” in Proc. of CoNEXT,
2009.

[16] S. Ioannidis, L. Massoulie, and A. Chaintreau, “Distributed
caching over heterogeneous mobile networks.” in Proc. of SIG-
METRICS, 2010.

[17] M. J. Pitkanen and J. Ott, “Redundancy and distributed caching
in mobile DTNs,” in Proc. of MobiArch, 2007.

[18] X. Zhuo, Q. Li, W. Gao, G. Cao, and Y. Dai, “Contact duration
aware data replication in delay tolerant networks.” in Proc. of
ICNP, 2011.

[19] X. Zhuo, Q. Li, G. Cao, Y. Dai, B. K. Szymanski, and T. L. Porta,
“Social-based cooperative caching in DTNs: A contact duration
aware approach.” in Proc. of MASS, 2011.

[20] Z. Li and H. Shen, “Sedum: Exploiting social networks in utility-
based distributed routing for DTNs,” TC, 2012.

[21] V. Gianuzzi, “Data replication effectiveness in mobile ad-hoc
networks,” in Proc. of PE-WASUN, 2004, pp. 17–22.

[22] S. Chessa and P. Maestrini, “Dependable and secure data storage
and retrieval in mobile wireless networks,” in Proc. of DSN, 2003.

[23] X. Chen, “Data replication approaches for ad hoc wireless net-
works satisfying time constraints,” IJPEDS, vol. 22, no. 3, pp. 149–
161, 2007.

[24] J. Broch, D. A. Maltz, D. B. Johnson, Y. Hu, and J. G. Jetcheva, “A
performance comparison of multi-hop wireless ad hoc network
routing protocols,” in Proc. of MOBICOM, 1998, pp. 85–97.

[25] M. Musolesi and C. Mascolo, “Designing mobility models based
on social network theory,” MCCR, vol. 11, pp. 59–70, 2007.

[26] Http://web.informatik.uni-bonn.de/IV/BoMoNet/BonnMotion.htm.
[27] P. Costa, C. Mascolo, M. Musolesi, and G. P. Picco, “Socially-

aware routing for publish-subscribe in delay-tolerant mobile ad
hoc networks,” IEEE JSAC, vol. 26, no. 5, pp. 748–760, 2008.

[28] M. Musolesi and C. Mascolo, “Car: Context-aware adaptive rout-
ing for delay-tolerant mobile networks.” TMC, 2009.

[29] H. Cai and D. Y. Eun, “Crossing over the bounded domain: from
exponential to power-law inter-meeting time in MANET.” in Proc.
of MOBICOM, 2007.

[30] R. Groenevelt, P. Nain, and G. Koole, “The message delay in
mobile ad hoc networks.” Perform. Eval., vol. 62, pp. 210–228, 2005.

[31] G. Sharma, R. Mazumdar, and N. B. Shroff, “Delay and capacity
trade-offs in mobile ad hoc networks: A global perspective.” in
Proc. of INFOCOM, 2006.

[32] L. Kleinrock, Queueing Systems, Volume II: Coputer Applications.
John Wiley & Sons, 1976.

[33] J. Kangasharju, K. W. Ross, and D. A. Turner, “Optimizing file
availability in peer-to-peer content distribution,” in Proc. of IN-
FOCOM, 2007.

[34] R. S. Gray, D. Kotz, C. Newport, N. Dubrovsky,
A. Fiske, J. Liu, C. Masone, S. McGrath, and Y. Yuan,
“CRAWDAD data set dartmouth/outdoor (v. 2006-11-06),”
http://crawdad.cs.dartmouth.edu/dartmouth/outdoor.

[35] N. Eagle, A. Pentland, and D. Lazer, “Inferring social network
structure using mobile phone data,” PNAS, vol. 106, no. 36, 2009.

[36] A. Chaintreau, P. Hui, J. Scott, R. Gass, J. Crowcroft, and C. Diot,
“Impact of human mobility on opportunistic forwarding algo-
rithms,” in Proc. of INFOCOM, 2006.

[37] “GENI project,” http://www.geni.net/.
[38] “Orbit,” http://www.orbit-lab.org/.
[39] “The Network Simulator ns-2,” http://www.isi.edu/nsnam/ns/.
[40] T. Spyropoulos, K. Psounis, and C. Raghavendra, “Efficient rout-

ing in intermittently connected mobile networks: The single-copy
case,” ACM/IEEE Transactions on Networking, 2007.

[41] M. Lu and J. Wu, “Opportunistic routing algebra and its applica-
tion,” in Proc. of INFOCOM, 2009.

[42] T. Hara, “Effective replica allocation in ad hoc networks for
improving data accessibility,” in Proc. of INFOCOM, 2001.

[43] Z. Li and H. Shen, “Analysis of cooperation incentive strategies
in mobile ad hoc networks,” TMC, 2012.

[44] B. Chen and M. C. Chan, “MobiCent: a credit-based incentive
system for disruption tolerant network.” in Proc. of INFOCOM,
2010.

Kang Chen Kang Chen received the BS degree
in Electronics and Information Engineering from
Huazhong University of Science and Technol-
ogy, China in 2005, and the MS in Communica-
tion and Information Systems from the Gradu-
ate University of Chinese Academy of Sciences,
China in 2008. He is currently a Ph.D student
in the Department of Electrical and Computer
Engineering at Clemson University. His research
interests include mobile ad hoc networks and
delay tolerant networks.

 
 
Haiying Shen received the BS degree in Computer Science and Engineering from Tongji 
University, China in 2000, and the MS and Ph.D. degrees in Computer Engineering from 
Wayne State University in 2004 and 2006, respectively. She is currently an Assistant 
Professor in the Holcombe Department of Electrical and Computer Engineering at 
Clemson University. Her research interests include distributed and parallel computer 
systems and computer networks, with an emphasis on peer-to-peer and content delivery 
networks, mobile computing, wireless sensor networks, and grid and cloud computing. 
She was the Program Co-Chair for a number of international conferences and member of 
the Program Committees of many leading conferences. She is a Microsoft Faculty Fellow 
of 2010 and a member of the IEEE and ACM. 
 
 

 
Cheng-Zhong Xu received B.S. and M.S. degrees from Nanjing University in 1986 and 
1989, respectively, and a Ph.D. degree in Computer Science from the University of Hong 
Kong in 1993. He is currently a Professor in the Department of Electrical and Computer 
Engineering of Wayne State University and the Director of Sun’s Center of Excellence in 
Open Source Computing and Applications. His research interests are mainly in 
distributed and parallel systems, particularly in scalable and secure Internet services, 
autonomic cloud management, energy-aware task scheduling in wireless embedded 
systems, and high performance cluster and grid computing. He has published more than 
160 articles in peer-reviewed journals and conferences in these areas. He is the author of 
Scalable and Secure Internet Services and Architecture (Chapman & Hall/CRC Press, 
2005) and a co-author of Load Balancing in Parallel Computers: Theory and Practice 

Haiying Shen Haiying Shen received the BS
degree in Computer Science and Engineering
from Tongji University, China in 2000, and the
MS and Ph.D. degrees in Computer Engineering
from Wayne State University in 2004 and 2006,
respectively. She is currently an Assistant Pro-
fessor in the Department of Electrical and Com-
puter Engineering at Clemson University. Her
research interests include distributed computer
systems and computer networks, with an em-
phasis on P2P and content delivery networks,

mobile computing, wireless sensor networks, and cloud computing. She
is a Microsoft Faculty Fellow of 2010, a senior member of the IEEE and
a member of the ACM.


